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A Model for Non-Stationary Time Series and Its
Applications in Filtering and Anomaly Detection
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Abstract— Time series measurements from sensing units (e.g.,
UWB ranging circuits) always suffer from uncertainties like
noises, outliers, dropouts, and/or nonspecific anomalies. In order
to extract the true information with high precision from the
original corrupted measurements, the signal-model-based signal
pre-processing units embedded in sensing circuits are usually
employed. However, for a general signal to observe, its signal
model cannot be obtained so that the signal-model-based signal
processing methods are not applicable. In this article, the time-
variant local autocorrelated polynomial (TVLAP) model in the
state space is proposed to model the dynamics of a non-stationary
stochastic process (i.e., a signal or a time series), through which
the model-based signal processing methods could be utilized
to denoise, to correct the outliers/dropouts, and/or to identify
anomalies contained in the measurements. Besides, the presented
method can also be used in change point detection for a time
series.

Index Terms— Anomaly detection, change point detection,
denoising, outlier correction, signal modeling, time-domain mea-
surement.

I. INTRODUCTION

T IME series measurements from sensing systems, such as
ultra-wideband (UWB) ranging circuit [1], seismic mon-

itoring system [2], and power system [3], always suffer from
uncertainties like noises [1], [2], [4], outliers [5], [6], dropouts
[7], and specific anomalies [8] (i.e., we know what features
it has or where it is from) or nonspecific anomalies [9], [10]
(i.e., we do not know what it is and where it is from). Over
the years, several powerful filtering [11]–[13], outlier/dropout
correction [7], [14], [15], and anomaly detection [6], [8],
[16] methods have been proposed to handle these problems.
However, virtually all of those efficient methods require the
use of the signal model, i.e., the signal process dynamics
and the sensor measurement dynamics. For the model-free
methods: (a) like IIR/FIR filters (e.g., exponential smoothing,
moving average) for filtering [17], they innately have time
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delay which denies the direct use in some strict real-time
applications; (b) like the one-sided median method for outlier
removal [18], it can neither handle the case where the outliers
are dense nor simultaneously denoise in an online manner.
Also, in model-free scenarios, it is challenging to describe
and/or decide whether anomalies are contained in the mea-
surements unless the offline methods like those in frequency
domain [19], [20] are applied (note that block data, rather than
streaming/sequential data, are required to do transformation
and analysis in the frequency domain). This article is therefore
concerned with modeling a non-stationary stochastic process
(i.e., a random signal or a time series) in the state space so that
we can use model-based signal processing methods like the
Kalman filtering to denoise, to correct the outliers/dropouts,
and/or to identify some types of anomalies contained in the
corrupted measurements from inexact sensing units.

The contributions of this article are both theoretical and
applicational.

1) State-Space Modeling for a Non-Stationary Signal: Sig-
nal model plays a very important role in signal process-
ing. However, for a general measurement signal from a
sensor, it is hard or even impossible to obtain the signal
model, because sometimes we have no knowledge of
the system (e.g., a sensor) generating the focused time
series. Fortunately, our Time-Variant Local Autocorre-
lated Polynomial (TVLAP) model could help detour this
issue.

2) Denoising: It is the use of derivatives of the mean
function (DMF) of the signal that makes more satis-
factory denoising/filtering performances for noised mea-
surements from a sensor.

3) Outlier/Dropout Correction: The proposed method is
powerful in identifying and correcting the outliers and
dropouts in measurements. We treat dropouts as special
outliers that are zero-valued.

4) Fault Dignosis (i.e., Anomaly Detection): Sensors
sometimes unavoidably suffer from anomalies (faults).
We aim to use the DMF of the measurement time series
to describe and identify those anomalies, and decide
whether the sensing system is currently reliable or not.

5) Change Point Detection: The proposed method can
be used to detect change points (e.g., turning points,
extrema, etc.) of a time series.

6) Theoretical Sufficiency: The complete reliability guaran-
tee of the proposed method is derived.
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II. PRELIMINARY ON STOCHASTIC PROCESS

Theorem 1 (Wold’s Decomposition Theorem [21]): Any
wide-sense stationary (WSS) discrete stochastic process x(n)
could be decomposed into two sub-processes: (a) regular
process and (b) predictable process. Namely x(n) = xr (n) +
x p(n), where xr (n) is a regular process and x p(n) is a pre-
dictable process. Furthermore, the two processes are orthogo-
nal: ∀τ, E{xr (n + τ )x p(n)} = 0.

The detailed concepts of regular process and the predictable
process could be found in [21]. Intuitively, a regular WSS
stochastic process is mathematically as x = ARMA(p, q)
(an autoregressive moving average process with autoregressive
order of p and moving average order of q). Thus, this theorem
reveals the validity of the ARMA model for a regular WSS
signal.

III. PROBLEM FORMULATION

A. Notations

1) Let v = a : l : b define a vector v being with the lower
bound a, upper bound b and step length l. For example,
v = 0 : 0.1 : 0.5 means a = 0, b = 0.5, and l = 0.1.
Thus v = [0, 0.1, 0.2, 0.3, 0.4, 0.5]T .

2) Let the function length(x) return the length of the vector
x. For example, if x = [1, 2]T , we have length(x) = 2.

3) Let t denote the continuous time variable, and n its
corresponding discrete time variable. For example, if t =
0 : 0.5 : 100 (the time span is 100 s, and the sampling
time is T = 0.5 s), we will have n = t/T = 0 : 1 :
[length(t)− 1] = 0 : 1 : 200.

4) Let the function mean(x) return the mean of a random
variable x, and var(x) the variance of it. If x is
a stochastic process, then mean(x) denotes the mean
function and var(x) the variance function.

5) Let G′ denote the transpose of the matrix G.
6) Let the operator ARMA(p, q|ϕ, θ) denote an ARMA

process with autoregressive order of p and moving
average order of q . Besides, the coefficient vectors ϕ

and θ are for autoregressive part and moving aver-
age part, respectively. ARMA(p, q|ϕ, θ) is shorted as
ARMA(p, q).

B. A New Model for a Non-Stationary Stochastic Process

In this article, we consider a general model describing
a non-stationary discrete stochastic process (signal) as the
following form:

x(n) = f (n)+ xs(n) (1)

where xs(n) := ARMA(p, q) is a regular WSS stochastic
process [i.e., xs(n) is the measurement noise of a sensing unit];
f (n) is a deterministic function denoting the mean function
of the time series x(n) [i.e., f (n) is the true information
contained in x(n)]. Since the expectation of the term xs(n)
is zero, we have mean(x) = f , and var(x) = var(xs).

Note that by using the model (1) for a measurement time
series, we are excluding the non-WSS measurement noises,
such as the flicker noise sequence (a.k.a. 1/ f noise) and

the random walk noise sequence (a.k.a. 1/ f 2 noise), etc.,
that mainly consist of low-frequency components [22], [23].
Namely, the basic assumption of the model (1) is that the
measurement noise sequence is regularly WSS. Any low-
frequency (e.g., non-zero-mean or zero-mean-but-unbounded-
variance) component of a measurement time series would be
regarded as a change of the measured quantity. See Fig. 9
for example.

C. Problem Statement

Mathematically, we aim to recover f (n) and its high-order
derivatives from noised x(n), in an online manner. This is
because the following conditions hold.

1) It is the incorporation of the DMF that allows us to
describe the dynamics of a signal with higher accu-
racy, which is useful in denoising and outlier/dropout
correction.

2) We can identify such the DMF as features to differentiate
the faults/anomalies contained in the measurements.

Note that the difference-based method
(e.g., [x(n)− x(n − 1)]/T ) is not reliable to estimate
the derivatives of a noised time series because the noises
would be amplified by the difference operator.

IV. MAIN RESULTS

A. TVLAP Model

In this section, we will introduce the TVLAP model with
Kalman Filter to handle the online mean function estimation
problem. As a demonstration, we in this section only take the
special case of (1) as x(n) = f (n) + Gw(n), where Gw(n)
denotes a white Gaussian series. The general case will be
discussed later.

We can use a polynomial to regress the mean function in an
online manner. We require that the regressed polynomial and
the mean function of the raw time series are close enough. The
theoretical validity and sufficiency of polynomial regression is
from the prestigious Weierstrass approximation theorem [24].
However, the dilemma is the concern of real-time property,
meaning we expect the algorithm to be able to work online
with sequential data. Recall the Taylor’s polynomial expansion

f (t) = f (t0)+ f (1)(t0)

1! (t − t0)+ · · ·

+ f (k)(t0)

k! (t − t0)
k + · · · (2)

where f (k)(t0) denotes the kth-order derivative of f (t) at t0.
However, a function could be expanded as Taylor’s series if
and only if it is infinitely smooth, meaning infinitely differ-
entiable. Thus we cannot directly apply the Taylor’s series
expansion over a general time series whose trend function
f (t) may be discontinuous in derivatives. To overcome this,
we introduce an intermediate (temporary) function p(t) as
the Weierstrass approximation of f (t). It means p(t) is a
polynomial with proper orders. Thus, we have ∀ε > 0,
∃K̄ > 0, such that

sup
t
| f (t)− pK̄ (t)| < ε (3)
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Fig. 1. Global and local polynomial. (a) Global polynomial. (b) Local
polynomial.

in a closed and bounded interval, where pK̄ (t) denotes a
polynomial with an order of K̄ . For simplicity, we ignore K̄
in notation. We have p(t) = p0+ p1t+ p2t2+· · ·+ pktk+· · · .

Thus, when we have a time series x(n), we could alterna-
tively choose the polynomial in Taylor’s form to regress p(t)
instead of f (t) because only p(t) is guaranteed to be infinitely
differentiable. This will not lead to a disaster, according to (3).
Suppose we have interests in the properties at the discrete time
index n (i.e., t0 = nT ), (2) could then be rewritten as

p(t) = p(n)+ p(1)(n)

1! (t − n)+ . . .+ p(k)(n)

k! (t − n)k + . . .

.(4)

As a result, the traditional polynomial regression p(t) = p0+
p1t+ p2t2+. . .+ pktk+. . . could be regarded as a special case
of (2) when we investigate the problem from the starting point
of the time, namely, t0 = 0. In other words, the polynomial (4)
is a local polynomial, while p(t) = p0 + p1t + p2t2 + . . .+
pktk + . . . is a global polynomial. For intuition see Fig. 1.

If we only pay attention to the case of t = (n + 1)T and
truncate the polynomial on the order of K , we have (4) as

p(n + 1) =
K∑

k=0

p(k)(n)

k! T k =
K∑

k=0

T k

k! p(k)(n) (5)

where T denotes the time slot between the discrete time
indices n + 1 and n (i.e., the sampling time).

Interestingly, (5) holds the following powerful characteris-
tics.

1) It is actually the state equation of a general time series.
Note that the nature of the state equation is the recursive
relationship of a time-related function from the former
discrete time index n to the latter n + 1.

2) It conveys the high-order derivatives up to the order of
K th of the function p(t), which is attractive in signal
processing.

In the state space, if we define our state vector as

X(n) :=

⎡
⎢⎢⎢⎢⎣

X0(n)
X1(n)
X2(n)
· · ·

X K (n)

⎤
⎥⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎢⎣

p(0)(n)
p(1)(n)
p(2)(n)
· · ·

p(K )(n)

⎤
⎥⎥⎥⎥⎦ (6)

meaning the first entry is the real-time value of p(n) and
the rest entries are the real-time values of the high-order
derivatives of p(n).

Consequently, we have the state space representation of (5)
as

X(n + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T K

K !
0 1 T · · · T K−1

(K − 1)!
0 0 1 · · · T K−2

(K − 2)!
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X(n). (7)

Equation (7) implies that when we model the dynamics of
f (n), we actually admit the K th-order derivative to remain
constant over time.

As time series measurements from a sensor, only the
sequential data x(n) is obtainable, observable. Therefore, we in
our state space adaptation should define the measure vector as

Y (n) = x(n) = f (n)+ xs(n) = p(n)+ xs(n)

:= f (n)+ Gw(n). (8)

By doing so, we have the measurement equation (also
known as observation equation or output equation) as

Y (n) := [
1 0 0 · · · 0

]
X(n)+ V (n) (9)

where V (n) is used to model the measurement noise Gw(n)
[in general, the xs(n)]. Note that, Y (n) and V (n) are all 1-D
scalars. We write them in bold-face just to follow the notation
convention for a state-space model.

Besides, we define

� :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T
T 2

2
· · · T K

K !
0 1 T · · · T K−1

(K − 1)!
0 0 1 · · · T K−2

(K − 2)!
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

as our System Matrix, and

H := [
1 0 0 · · · 0

]
(11)

as our Measurement Matrix. Therefore, � and H are constant
if given the order K . Suppose the state noise vector is W(n)
with covariance Q(n) and its noise-driven matrix is G; the
measurement noise state vector is V (n) with covariance R(n).
We then have a state-space model for the time series x(n) as{

X(n + 1) = �X(n)+ GW(n)
Y(n) = H X(n)+ V (n)

(12)

where W(n) denotes the modeling error. Since V (n) is a
scalar, R(n) is also a scalar. Besides, due to the measurement
noise process xs(n) is WSS, R(n) is constant over time. Let
R = R = R(n). The first equality means R is a scalar and
the second means R(n) is constant.

Note that the mathematical form of G is not unique,
meaning we can define it as any proper one. Some simple
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examples are: 1) G = [ T K

K ! , . . . , T, 1]′ so that W(n) should
be a 1-D scalar denoting the disturbance exerted to X K (n);
2) G = diag{ T K

K ! , . . . , T, 1} so that W(n) should be a
(K + 1)-dimensional vector denoting the disturbance exerted
to X(n); 3) G as an identity matrix so that W(n) should be a
(K + 1)-dimensional vector denoting the disturbance exerted
to X(n). The difference between 2) and 3) is reflected in their
corresponding Q(n).

B. Estimate the R and Q(n)

Actually, R is easy to estimate from the historical observa-
tions (measurements) of x(n̄). Here n̄ is used to differentiate
from n, meaning x(n̄) could be any segment of x(n) in the
past, just as ground truth to estimate R. Suppose we use the
traditional global polynomial p̄(t) to fit x(n̄) (e.g., using a
three-layer neural network [25]), we should have the fitting
residual δ as δ(n̄) := x(n̄) − p̄(n̄). According to our model
assumption, δ(n̄) should be a WSS stochastic process, meaning
the selected order of p̄(t) is proper if and only if δ(n̄) is WSS.
Thus, we have R := var(δ).

As for the real-time estimation of Q(n) when given (12)
and R, readers are invited to refer to [26], [27].

Remark 1: In practice, at many times there is no need to
pursue the exactly true value of Q(n). Engineers could try
different Q(n) to obtain different estimation performances.
Note that the value of Q(n) actually adjusts our trust level
toward the system model that we use [28]. The larger the value
of Q(n), the less trust we have toward the dynamics model
(i.e., the more trust toward the measurements). Therefore, for
convenience, we suggest using G = [ T K

K ! , . . . , T, 1]′ so that
W(n) would be a (constant) scalar which is easier to tune.

C. Applications of TVLAP-KF

Now, it is sufficient to use the Kalman filter to handle the
linear system (12), during which we can estimate the real-time
value X̂0 of p(n), and real-time values of kth-order derivative
X̂k of p(n), where p(n) is the true signal (the mean function)
of the focused time series x(n). Note that the Kalman filter
admits the regularized residual norm minimization so that the
high-order derivatives of p(n) exist as regularization terms
[29], which helps avoid over-fitting.

We, in this article, term the presented method as TVLAP
Model with Kalman Filter, shorted as TVLAP-KF. Time-
Variant means the coefficients of the used polynomial
model (5), namely p(k)(n)/k! and Xk(n), change over time.
The meaning of the word Local has been explained earlier
in Fig. 1. Autocorrelated means the coefficients of the used
polynomial are not independent, are instead highly related,
because we have

p(k+1)(n) = d
[

p(k)(n)
]

dt
. (13)

In the following, we show some possible applications
of the proposed TVLAP-KF. The corresponding experi-
ments will be conducted in experiment Section V. First,
by using TVLAP-KF, the measurements from sensors could be
denoised/filtered, i.e., the noise part xs(n) could be attenuated.
Second, TVLAP-KF can predict future measurement based on

the historical measurements so that if the predicted measure-
ment is far away from the collected one, we can identify the
collected value as an outlier/dropout and replace it with the
predicted value. This process corrects the outliers/dropouts
contained in the measurements. Third, by using DMF (viz.,
DMF of a measurement signal) as features, we can easily
describe and detect some types of anomalies contained in
the measurements so that we can tell apart the associated
malfunctioning sensor. Fourth, as a supplementary application
scenario, we show the advantages of the proposed TVLAP-KF
in Change Point Detection for a time series. See Algorithm 1.

Algorithm 1 Change Point Detection Method Based on
TVLAP-KF
Definition: P as state estimate covariance in Kalman filter;
I as identity matrix with proper dimension; ∞ as a big
number; ε as a small number; abs(x) as the absolute
function which return the absolute value of a real number; ∅
as an empty set
Reservation: Set �m to record minima, and Set �m to
record maxima
Initialize: ∞← 105, ε ← 10−6, X ← 0, P ←∞× I , Q,
R, �m ← ∅, �m ← ∅
Input: x(n), n = 0, 1, 2, 3, . . .
1: while true do
2: n← n + 1
3: // Estimate the DMF
4: X̂(n) = Kalman_Filter[x(n)] // See [28] (Chapter 5.1)
5: // Obtain the Estimated Mean Function
6: f̂ (n)← X̂0(n)
7: // Turning Point Detection
8: if abs(X̂1(n − 1)) < ε and X̂1(n) > 0 then
9: The time series starts to increase

10: else if abs(X̂1(n − 1)) < ε and X̂1(n) < 0 then
11: The time series starts to decrease
12: end if
13: // Extrema Detection
14: if abs(X̂1(n)) < ε and X̂2(n) > 0 then
15: �m ← {n} ∪�m // Minimum reached
16: else if abs(X̂1(n)) < ε and X̂2(n) < 0 then
17: �

m ← {n} ∪�m // Maximum reached
18: end if
19: end while
Output: estimated mean f̂ (n); minima set �m ; maxima set
�

m

D. Reliability Guarantee of TVLAP-KF

In this section, we analyze the performances of the pro-
posed TVLAP-KF. That is, we need to investigate whether
the TVLAP-KF could recursively approximate p(t) and its
derivatives defined in (4) with satisfying accuracy.

Definition 1: The linear time-invariant system defined
as (12) is uniformly completely observable if the matrix O
defined by the matrices pair [�, H]:

O = [H ′,�′H ′, . . . , (�K )′H ′]′ (14)

is of full rank.
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Definition 2: The linear time-invariant system defined
as (12) is uniformly completely controllable if the matrix C
defined by the matrices pair [�, G]:

C = [G,�G, . . . ,�K G] (15)

is of full rank.
Lemma 1: �K (T ) = �(K T ).

Proof: Actually, there exists a matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(16)

such that �(T ) = e AT . Thus, �K (T ) = eK AT = �(K T ).
That is,

�K (T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 K T
(K T )2

2
· · · (K T )K

K !
0 1 K T · · · (K T )K−1

(K − 1)!
0 0 1 · · · (K T )K−2

(K − 2)!
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Lemma 2: The Vandermonde matrix defined as

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

1 α3 α2
3 . . . αn−1

3
...

...
...

. . .
...

1 αm α2
m . . . αn−1

m

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

is of full rank if ∀i 	= j , we have α j 	= αi .
Proof: Since det(V ) = ∏

1≤i< j≤n(α j − αi) (see [30],
Chapter 6.1), the lemma stands.

Lemma 3: The linear time-invariant system defined in (12)
is uniformly completely observable, if K is finite.

Proof:

O =

⎡
⎢⎢⎢⎣

H
H�
...

H�K

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

1 T
(T )2

2
· · · (T )K

K !
1 2T

(2T )2

2
· · · (2T )K

K !
...

...
...

. . .
...

1 K T
(K T )2

2
· · · (K T )K

K !

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

Note that, if K tends to infinity, many entries of O would
tend to zeroes. Thus, if K is finite, by Lemma 2, we have

rank(O) = rank

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

00 01 02 · · · 0K

10 11 12 · · · 1K

20 21 22 · · · 2K

...
...

...
. . .

...
K 0 K 1 K 2 · · · K K

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= K + 1 (20)

meaning O is of full rank. According to the definition of
observability, this lemma stands.

Lemma 4: The linear time-invariant system defined in (12)
is uniformly completely controllable, if K is finite and G is
given as one of the following cases.

1) G1 = [ T K

K ! , . . . , T, 1]′.
2) G2 = diag{ T K

K ! , . . . , T, 1}.
3) G3 as an identity matrix I with proper dimensions.

Proof: Let C�,G denotes the controllability matrix defined
by the pair [�, G]. Since C = [G,�G, . . . ,�K G], it is
easy to check that rank(C�,G3) = K + 1 (full rank). Due
to rank(C�,G2) = rank(C�,G3), rank(C�,G2) = K + 1 also
holds. As for C�,G1 , we have (21), as shown at the bottom of
the page.

By the binomial theorem, the entry of C�,G1 at (I+1, J+1)
is therefore

C�,G1(I + 1, J + 1) =
K−I∑
i=0

(J T )i T K−I−i

i !(K − I − i)!
= 1

(K − I )! (J T + T )K−I (22)

C�,G1 =
[
G1,�G1, · · · ,�K G1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T K

K !
K∑

i=0

(1T )i

i !
(T )K−i

(K − i)! · · ·
K∑

i=0

(K T )i

i !
(T )K−i

(K − i)!
T K−1

K − 1!
K−1∑
i=0

(1T )i

i !
(T )K−1−i

(K − 1− i)! · · ·
K−1∑
i=0

(K T )i

i !
(T )K−1−i

(K − 1− i)!
...

...
. . .

...

T
1∑

i=0

(1T )i

i !
(T )1−i

(1− i)! · · ·
1∑

i=0

(K T )i

i !
(T )1−i

(1− i)!
1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)
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where I, J = 0, 1, 2, . . . , K , giving C�,G1 further as

C�,G1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T K

K !
(2T )K

K !
(3T )K

K ! · · · [(K+1)T ]K
K !

T K−1

K−1!
(2T )K−1

K−1!
(3T )K−1

K−1! · · · [(K+1)T ]K−1

K−1!
...

...
...

. . .
...

T 2T 3T · · · (K+1)T
1 1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(23)

Note that, if K tends to infinity, many entries of C�,G1

would tend to zeroes. Thus, if K is finite, by Lemma 2,
we have

rank(C�,G1)

= rank

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

1K 2K · · · (K + 1)K

1K−1 2K−1 · · · (K + 1)K−1

...
...

. . .
...

11 21 · · · (K + 1)1

10 20 · · · (K + 1)0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= K + 1. (24)

Since C�,G1 defined in (21) is rank-sufficiency, this lemma
stands.

Theorem 2: For any given norm-finite X̂0|0, if �, G, Q and
R are bounded, [�, H] is uniformly completely observable,
and [�, G] is uniformly completely controllable, then

X̂n|n →d Xn, as n→∞ (25)

meaning

p̂(k)(n)→d p(k)(n), as n→∞ ∀k = 0, 1, 2, . . . , K .

(26)

Besides, the convergence rate is exponential (i.e., very fast).
Remark 2: Note that in Theorem 2, the notation→d means

convergence in distribution, for example, X̂n|n →d Xn admits[
X̂n|n − Xn

]→d N(0, Pn|n) where X̂n|n means the a posteri-
ori estimation of Xn given by the Kalman filter; N(·, ·) means
a multivariate normal distribution; and Pn|n is the a posteriori
estimation error covariance returned by the Kalman filter.

Proof: According to [31] (see Theorem 4) and [32]
(see Chapter 4.4), with support of our Lemma 3 and
Lemma 4, this theorem holds. Note that uniformly complete
controllability (respective observability) implies the uniformly
complete stabilizability (respective detectability). Note also
that rank(O�,H ) = rank(O�,H R1/2), and rank(C�,G) =
rank(C�,G Q1/2), where R1/2(R1/2)′ = R and Q1/2( Q1/2)′ =
Q. Since R and Q are positive definite, the decomposition
can be made. O�,H denotes the observability matrix defined
by the pair [�, H]. The notation conventions keep the same
to C�,G , O�,H R1/2 , and C�,G Q1/2 .

As we can see, the observability and controllability of the
system (12) are the sufficient conditions for the convergence
results in Theorem 2. Intuitively, the observability guaran-
tees that the system state X(n) [i.e., p(k)(n)] is able to be

observed/estimated from the system output Y(n). Otherwise,
if (12) is not observable, the output Y (n) will give no enough
information to estimate X(n). On the other hand, the con-
trollability (which implies the stabilizability) guarantees that
the state estimation error covariance (i.e., Pn|n) is bounded
(therefore reliable) [32].

E. Select the Model Order K

It is easy to see that the core of the TVLAP model is
the matrix � defined in (10). It relates to the parameter K .
In theory, for K , the larger, the better. However, in practice,
due to the existence of noise and the Runge phenomenon
in polynomial fitting, K should not be extremely large.
According to the authors’ experiences from experiments, the
suggested value of K should be 2 ∼ 5 (0 and 1 are also useful
for some cases). K = 3, 4 are typical options.

F. General Methodology for Non-White Noise

We, in this section, derive the TVLAP-KF model for a time
series with colored (non-white) noise. That is, we no longer
assume xs(n) to be white. Instead, we investigate the general
colored case of it.

Suppose the noise part xs(n) could be modeled by
ARMA(p, q|ϕ, θ) with the transfer function as

H (z) = θ0 + θ1z−1 + . . .+ θqz−q

1+ ϕ1z−1 + . . .+ ϕpz−p
. (27)

It means that the input of this ARMA system is a 1-D Gaussian
white sequence ε(n) and the output is 1-D xs(n) =: V (n).
Since xs(n) is WSS, ε(n) is also WSS. Note that the first
coefficient of the denominator polynomial is normalized to
1. Note also that the white noise case is the special case of
ARMA(p, q) with H (z) = θ0, that is, ARMA(0, 0).

Let r := max{p, q}, ϕ j := 0,∀ j > p, and θ j := 0,∀ j > q .
Then we have an alternative representation of (27) as

H (z) = θ0 + θ1z−1 + . . .+ θr z−r

1+ ϕ1z−1 + . . .+ ϕr z−r

= θ0zr + θ1zr−1 + . . .+ θr

zr + ϕ1zr−1 + . . .+ ϕr

= θ0 + β1zr−1 + . . .+ βr

zr + ϕ1zr−1 + . . .+ ϕr
(28)

where βi := θi − θ0ϕi , i = 1, 2, . . . , r .
Therefore, the state-space counterpart of (27) is{

ξ (n + 1) = �ξ (n)+ϒε(n)
V (n) = 	ξ (n)+
ε(n)

(29)

where

� =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ϕr −ϕr−1 −ϕr−2 · · · −ϕ1

⎤
⎥⎥⎥⎥⎥⎦

(30)

ϒ = [
0 0 · · · 0 1

]′
(31)

	 = [
βr βr−1 · · · β2 β1

]
(32)
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and


 = θ0. (33)

Note that this V (n) is conceptually similar to the one in (9).
Thus, the entire state space model for our general model

x(n) = f (n)+ xs(n), namely, (1) should be⎧⎪⎪⎨
⎪⎪⎩

X(n + 1) = �X(n)+ GW(n)
Y (n) = H X(n)+ V (n)
ξ (n + 1) = �ξ (n)+ϒε(n)
V (n) = 	ξ(n)+
ε(n)

(34)

which, by augmenting the state vector, is equivalent to{
X̄(n + 1) = �̄X̄(n)+ w̄(n)
Y(n) = H̄(n)X̄(n)+ v̄(n)

(35)

where

X̄(n) :=
[

X(n)
ξ (n)

]
(36)

�̄ :=
[

� 0
0 �

]
(37)

w̄(n) :=
[

G 0
0 ϒ

][
W(n)
ε(n)

]
(38)

H̄ := [
H 	

]
(39)

and

v̄(n) := 
ε(n). (40)

The system (35) could be handled by the Colored Kalman
filter (see [28], Chapter 7.1). Note that the covariance matrix
between the process noise w̄(n) and the measurement noise
v̄(n) is

E[w̄(n)v̄T ( j)] := M(n)δk− j =
[

0
ϒ R̄
′

]
δn− j

=
[

0
ϒ R̄


]
δn− j (41)

where δn− j is the Kronecker delta function; R̄ = R̄ = R̄(n)
denote the variance of ε(n). Note that R̄(n) is 1-D and
constant over time. Now, the last thing to do is to estimate
the value of R̄.

Equation (27) reveals how ε(n) generates xs(n) = V (n).
Since xs(n) is a WSS process with constant variance R, we can
have the constant variance R̄ of ε(n), according to [17] (see
Chapter 2.11.1), implicitly defined as

R = 1

2π

∫ π

−π

∣∣H (e jw)
∣∣2 · R̄dw

= R̄ · 1

2π

∫ π

−π

∣∣H (e jw)
∣∣2

dw (42)

where H (e jw) = H (z)|z=e jw is the Fourier frequency response
of H (z); the term

∣∣H (e jw)
∣∣2 · R̄ denotes the power spectra of

the output sequence xs(n). Suppose the impulse response of
the system H (z) is h(n). According to the Parseval’s theorem
(see [17], Chapter 2.9.11), we further have

R = R̄ ·
∞∑

n=−∞
h2(n) (43)

Fig. 2. UWB ranging module and its supporting pole. (a) UWB module.
(b) Supporting pole.

namely,

R̄(n) = R̄(n) = R̄ = R∑∞
n=0 h2(n)

. (44)

Note that in (44), R has already been estimated from the
residual series δ(n̄) (see section IV-B). Note also that when
H (z) is stable,

∑∞
n=0 |h(n)| is convergent, which means that∑∞

n=0 h2(n) is also convergent. Besides, when H (z) is causal,
h(n) = 0, ∀n < 0. For a real system H (z), the stability and
causality are guaranteed.

V. EXPERIMENTS

The experiments are based on UWB ranging signals for
range-based positioning problem. The source codes and data
are available online at GitHub: https://github.com/Spratm-
Asleaf/TVLAP-KF. In order to improve the positioning per-
formances, we deploy many (more than required three for
2-D positioning) UWB anchors (i.e., UWB bases). Since this
article mainly contributes to provide a model for a non-
stationary signal through which the signal-model-based signal
processing methods could be used, we do not conduct inten-
sive comparison experiments regarding the performances of
different signal-model-based signal processing methods. Only
the representative exponential smoothing (ETS) method which
is signal-model-free is adopted to compare with TVLAP-KF.

A. UWB Ranging Device

The UWB wireless transceiver chip for ranging that
we adopt is the DW1000, produced by Decawave
(https://www.decawave.com/product/dw1000-radio-ic/). The
UWB chip, UWB antenna, power, power amplifier circuit,
clock, communication buses [i.e., Serial Peripheral Interface
(SPI)], micro-controller (i.e., STM32F103C8T6), etc., are
integrated together to build the UWB ranging module. See
Fig. 2. The ranging protocol is the symmetric-double-sided
two-way time-of-arrival (SDS-TW-TOA) based on the IEEE
Standard 802.15.4a [33].

B. Outlier/Dropout Correction

The first experiment is conducted outdoors. The field config-
uration of the UWB positioning environment with eight UWB
anchors is shown in Fig. 3. This field is 100 m by 10 m.
The UWB tag starts its trajectory near the A0 and follows the
orange dotted rectangle counterclockwise.
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Fig. 3. Field configuration of the UWB positioning environment. We use
eight UWB anchors indexed A0 ∼ A7. In (b), only A0 and A4 are illustrated.
(a) Topology. (b) Real field.

Fig. 4. Illustration of outliers and dropouts contained in the UWB ranging
measurements. The data are from A2. Dimension in y axis: meter.

Taking ranging measurements from A2 during one test as an
example, it contains many outliers and dropouts. See Fig. 4.
The sampling time is 0.1 s.

We aim to use the proposed TVLAP-KF (K = 3, R =
(0.05/3)2, Q = 0.012, T = 0.1) to identify and correct such
outliers and dropouts. We use (0.05/3)2 for R because the
error range of UWB ranging sensors are ±5 cm. Therefore,
by using the popular “3σ” rule, we value the ranging variance
of UWB sensors as (0.05/3)2. The results are shown in Fig. 5.
From Fig. 5, we can see that no matter the outliers/dropouts are
sparse [see like (a), (b), (d)] or dense [see like (c)], TVLAP-
KF can always handle them.

After using an efficient multiple-bases TDOA method [34],
the real-time position in y-axis is shown in Fig. 6. The
comparison experiment is conducted with the ETS method
which is free of the signal model. As we can see, the traditional
ETS method (filtering parameter: 0.11) may suffer from severe
time delay and not robust enough for dense outliers/dropouts
[see, for example, Fig. 6(b) around 48th s].

C. Anomaly Detection (i.e., Fault Diagnosis) of Sensors

The second experiment is conducted indoors. In order to
focus on the problem of anomaly detection, we choose range
measurements that do not contain outliers/dropouts. Due to
signal sheltering and complex electromagnetic environment,
ranging signals from different anchors may have different
ranging performances at different areas. Thus, we aim to select
sensors without large errors from all the available anchors
in one area to localize the moving target. The essence of
the above issue is actually to diagnose the sensor fault (or
detect the anomalies in ranging signals), in an online manner.
Ranging signals provided by three of all available anchors are
shown in Fig. 7(a).

Fig. 5. Outliers/dropouts correction results using TVLAP-KF. (a) Range 0.
(b) Range 1. (c) Range 2. (d) Range 3. (e) Range 4. (f) Range 5. (g) Range
6. (h) Range 7.

Fig. 6. Real-time position in y-axis. Unit in y-axis: meter. (a) Real-time
position in y-axis. (b) Closeup of (a).

Intuitively, the Sensor 3 is with large error, since its ranging
signal jumps at many places (for instance, when t = 25 ∼ 30,
around t = 48, and t = 70 ∼ 80, t is time). Those jumps are
in fact errors because a real moving target cannot maneuver
in such a sharp way. On the other hand, if they are indeed
generated from sharp maneuvers, Sensor 1 and Sensor 2 should
have the same jumps in their ranging signals as well.

We aim to differentiate Sensor 3 from Sensor 1 and Sen-
sor 2 so that Sensor 3 would be excluded to participate in
positioning in this area. If we use TVLAP-KF (K = 4,
R = (0.05/3)2, Q = 2.52, T = 0.1; R is estimated from

Authorized licensed use limited to: National University of Singapore. Downloaded on May 28,2021 at 15:02:38 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MODEL FOR NON-STATIONARY TIME SERIES AND ITS APPLICATIONS IN FILTERING AND ANOMALY DETECTION 6502911

Fig. 7. UWB ranging signals and their first-order DMF. The variances of the
three time series in (b) are 0.6424, 0.8293, and 3.3216, respectively. (a) UWB
ranging signals from three of anchors. (b) DMF (first-order) of three UWB
ranging signals.

the real data; Q is set to be relatively larger because we in
this scenario emphasize more on observations than the system
model) to estimate the changing pattern (first-order derivative)
of ranging signals, we have Fig. 7(b).

From Fig. 7, it is easy to tell apart Sensor 3 from Sen-
sor 1 and Sensor 2 because Sensor 3 has significantly large
variance (or more outliers) in the first-order DMF of ranging
signals. Note that the variance estimation method of a zero-
mean sequence x(n) is given as

∑n
i=1[x(i)]2/(n−1) (its online

version, namely recursive version, is easy to derive).

D. Denoising and Prediction

In this part, we demonstrate the denoising (i.e., filtering)
and prediction performance of TVLAP-KF with different K .

Since we do not know the true real-time positions (i.e.,
true signal) of a moving UWB tag, we cannot compare the
denoised signal with the true signal. This is because we cannot
control the true trajectory of the UWB tag to ideally follow
the given trajectory with a constant moving speed. Therefore,
we conduct the experiments over simulated data. Suppose we
have t = 0 : 0.1 : 120, x(n) = 5 sin(0.1t) + exp(0.03t) +
Gw(length(t)), the filtering results and the 200-step ahead
predictions given by TVLAP with K = 4, K = 1, and K = 0,
respectively, are displayed in Fig. 8, in which Q = 3002,
R = 12, and T = 0.1.

All the results given in Fig. 8 are the respectively best ones
among ten simulations. The corresponding denoising (i.e., time
from 0 to 100) and prediction (i.e., time from 100 to 120)
mean square error (MSE) are given in Table I. As we can
see, it is the use of DMF of signal that allows us to make
more satisfactory filtering and prediction. Moreover, the order-
insufficient models cannot promptly track the relatively sharp

Fig. 8. Denoising and prediction performances of TVLAP with different K .

TABLE I

DENOISING AND PREDICTION MSE OF TVLAP

Fig. 9. Proposed method cannot handle the random walk noises contained
in the measurement time series. The low-frequency component of the noise
sequence is identified as non-zero readings of the measured quantity.

changing pattern of a time series. Therefore, high-order models
(with relatively large K ) are expected.

Note again that the outliers/dropouts correction is based
on signal prediction. Therefore, the good performances in
forecasting guarantee the performances in outliers/dropouts
correction.

VI. DISCUSSIONS AND CONCLUSION

This article provides a state-space model for a non-
stationary signal so that the model-based signal processing
methods could be utilized. Its possible applications in engi-
neering are discussed. Simulation suggests that the incorpora-
tion of DMF of a signal helps improve the filtering/denoising
and forecasting performances, which further accounts for the
high- accuracy and precision outliers/dropouts correction, and
anomalies detection for measurement signals from sensors.
However, the proposed model has the following shortcomings
that give rise to alerts to users.

1) As mentioned in section III-B, non-WSS noises, such
as the random walk noise, etc., cannot be handled. For
example see Fig. 9.

2) If the measured quantity changes suddenly at a time
instant, for example, there is a step contained in the true
information f (n) of (1), the proposed method would
be likely to identify this sharp change as anomalies so
that some true information would be, on the contrary,
negatively influenced. See, for example, Fig. 10(a).
However, this problem could be mitigated by an extra
strategy: if successively many (e.g., 3 or 5) “outliers”
occur and those “outliers” are not very far away from
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Fig. 10. Step change contained in the true information of the measurement
time series. (a) Sudden change is wrongly treated as anomalies. (b) Perfor-
mance after using the proposed remedy strategy. (a) Treat a step change as
outliers. (b) Using the remedy strategy.

Fig. 11. Outlier is contained in the first-order derivative of the true
information of the measurement time series. The outlier in (a) and (b) has a
smaller amplitude as 1.5 so it cannot be identified, while in (c) and (d) has a
larger amplitude as 15 so it can be identified. However, we can only identify
that the outlier happens at this time instant. We cannot estimate the true
amplitude of this outlier (i.e., the estimated amplitude is about 2.5 instead
of 15). The measurement noise level (with a standard deviation of 0.05/3)
keeps the same in the sub-figures (a) and (c). (a) Measurement time series.
(b) First-order derivative of (a). (c) Another measurement series. (d) First-
order derivative of (c).

each other, we no longer treat those as outliers and use
the predicted values to replace them. Instead, we accept
them as truly believable measurements and directly feed
to the proposed method. According to Theorem 2, the
proposed method would let the estimated quantities (e.g.,
p(n) and its derivatives) quickly converge to their true
values again [see Fig. 10(b)].

3) An error caused by a change in one of the derivatives
of the measurement time series might not be detected
because the contribution of this change does not produce
a significant dispersion in the measurement data. For
example [see Fig. 11(a) and (b)] in which an outlier
is contained in the first-order derivative. However, this
depends a lot on the relative amplitude of the outlier
compared to the measurement noise level. If the relative
amplitude of the outlier is larger, it is still possible to
identify the outlier contained in the first-order derivative
[see Fig. 11(c) and (d)].

For more practical issues about implementing the
TVLAP-KF, see https://github.com/Spratm-Asleaf/Range-
Correction.
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